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Modelling of HVDC systems
• Simulation models: 

– Not always accurate

– Impractical simulation times in very complex systems

Alternatives

• Experimental test rigs

• Real time simulators

• Hardware-in-the-loop (HIL): Experimental test rig+ 
Real time simulator
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Problem:  Experimental test rig only for a limited 
number of configurations and specifications



Scaling a test system
• Experimental results are reliable if the test rig is a 

close representation of a test system

• What does it mean to scale a system?

– Process to represent a test system with an experimental 
test rig
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Test rig

Run 
experiments

Scale-up
experimental 
results to 
represent test 
system



Scaling a test system
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Test rig

HVDC 
system 1

Design to match HVDC 
system specifications

HVDC 
system 2

HVDC 
system 3

Test rig is not designed to 
represent HVDC system 2 and 3 

• 2 possible solutions:

Change configuration or 
specifications of test rig

Apply correction with VSC
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Proposed procedure
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DC per-unit representation
• In DC systems, L and C are not defined as impedances due to 

the lack of base frequency

• Energy method [1]: dynamic response represented with the 
energy stored in L and C
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Quantity Expression

Power 𝑃𝑏

Voltage 𝑈𝑏

Current 𝐼𝑏 =  
𝑃𝑏
𝑈𝑏

Impedance
𝑍𝑏 =  

𝑈𝑏
𝐼𝑏
=  𝑈𝑏

2

𝑃𝑏

Resistance 𝑅𝑏 = 𝑍𝑏

Inductance 𝐿𝑏 = 2𝑍𝑏

Capacitance 𝐶𝑏 = 2/𝑍𝑏

[1] T. M. Haileselassie. Control, Dynamics and Operation of Multi-terminal VSC-HVDC Transmission
Systems. PhD thesis, Norwegian University of Science and Technology, 2012.



Droop control correction
• In this study only the cable resistance is modified

correction of steady state results

• Droop control implemented in VSC represents:

– Voltage source, 𝑢0

– Virtual resistance, 𝑟𝑑𝑟𝑜𝑜𝑝
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𝑖𝑠𝑦𝑠 = 𝑘𝑑𝑟𝑜𝑜𝑝(𝑢𝑠𝑦𝑠 − 𝑢0)

(in per unit)



Droop control correction
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𝑖𝑒𝑥𝑝 = 𝑘𝑑𝑟𝑜𝑜𝑝
∗ (𝑢𝑒𝑥𝑝 − 𝑢0)

• In experimental test rig the virtual resistance 
compensates the difference with the HVDC test 
system:

𝟏/𝒌𝒅𝒓𝒐𝒐𝒑
∗

1

𝑘𝑑𝑟𝑜𝑜𝑝
∗ =

1

𝑘𝑑𝑟𝑜𝑜𝑝
+

1

𝑘𝑎𝑑𝑑
= 𝑟𝑑𝑟𝑜𝑜𝑝 + 𝑟𝑎𝑑𝑑

𝑟𝑎𝑑𝑑 = 𝑟𝑐𝑎𝑏𝑙𝑒,𝑠𝑦𝑠 − 𝑟𝑐𝑎𝑏𝑙𝑒,𝑒𝑥𝑝
(in per unit)



Droop control correction
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• Estimation of results from experiments (in per-unit)

– DC current: 

– DC voltage:

– DC power: 

• Scale-up the results from base values of the HVDC 
system:

𝑖𝑠𝑦𝑠 = 𝑖𝑒𝑥𝑝

𝑢𝑠𝑦𝑠 = 𝑢0 − 𝑖𝑒𝑥𝑝𝑟𝑑𝑟𝑜𝑜𝑝

𝑝𝑠𝑦𝑠 = 𝑢𝑠𝑦𝑠𝑖𝑒𝑥𝑝

𝐼𝑠𝑦𝑠 = 𝐼𝑏,𝑠𝑦𝑠 𝑖𝑠𝑦𝑠

𝑈𝑠𝑦𝑠 = 𝑈𝑏,𝑠𝑦𝑠 𝑢𝑠𝑦𝑠

𝑃𝑠𝑦𝑠 = 𝑃𝑏,𝑠𝑦𝑠 𝑝𝑠𝑦𝑠
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Application of scaling method
• Test system: 3-terminal VSC-HVDC scheme
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Application of scaling method
• Experimental set-up
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Specifications of VSCs Operation rating

Rated power 2 kW

DC voltage 250 V

AC voltage 140 V



Application of scaling method
• Virtual circuits in the 3-terminal system
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Application of scaling method
• Droop correction in the experimental set-up
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Application of scaling method
• 3 case studies are considered to validate the method
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Parameter Case 1 Case 2 Case 3

Rated power of VSCs 800 MW 400 MW

MTDC rated voltage ±200 kV

Cable length 1-3 200 km 100 km 200 km

Cable length 2-3 400 km 500 km 400 km

Quantity Case 1 Case 2 Case 3 Test rig

Base power, 𝑃𝑏 800 MVA 400 MVA 700 VA

Base voltage, 𝑉𝑏 400 kV 250 V

Resistance 1-3, 𝑟13 0,0096 0,0048 0,0048 0,0005

Resistance 2-3, 𝑟23 0,0192 0,0240 0,0096 0,0026

• Base values and DC cable resistances in per-unit for 
each case study and the experimental test rig



Results
• Comparison simulation in PSCAD with experimental 

results with and without the droop correction

• Initial injection of 0,3 pu from OWF.

• Increase of power to 0,6 pu.

• Droop control in GSC1 and GSC2 designed to share 
the same power

• DC current and voltage results
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Results
• Case 1: 800 MW, l13=200 km, l23=400 km
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Results
• Case 2: 800 MW, l13=100 km, l23=500 km
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Results
• Case 3: 400 MW, l13=200 km, l23=400 km
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Conclusions
• A scaling method was demonstrated to obtain 

uniform steady state responses between an MTDC 
experimental rig and three different HVDC systems

• The droop control correction allows representing 
many equivalent DC cables without using different 
physical elements Increase flexibility of 
experimental set-up.
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Any question?
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