

A Scaling method for a multiterminal DC experimental test rig

6th HVDC Colloquium Roskilde, 18/09/15

Marc Cheah

- 1. Motivation
- 2. Scale-down procedure
- 3. Example
- 4. Conclusions

1. Motivation. What/Why do we need scaling?

- 2. Scale-down procedure
- 3. Example
- 4. Conclusions

Modelling of HVDC systems

- Simulation models:
 - Not always accurate
 - Impractical simulation times in very complex systems

Alternatives

- Experimental test rigs
- Real time simulators
- *Hardware-in-the-loop (HIL):* Experimental test rig+ Real time simulator

Problem: Experimental test rig only for a limited number of configurations and specifications

Scaling a test system

- Experimental results are reliable if the test rig is a close representation of a test system
- What does it mean to scale a system?
 - Process to represent a test system with an experimental test rig

Test rig

Scaling a test system

• 2 possible solutions:

Change configuration or specifications of test rig

Apply correction with VSC

1. Motivation

- 2. Scale-down procedure. *How to scale a test rig?*
- 3. Example
- 4. Conclusions

Proposed procedure

DC per-unit representation

- In DC systems, L and C are not defined as impedances due to the lack of base frequency
- <u>Energy method [1]</u>: dynamic response represented with the energy stored in L and C

Quantity	Expression
Power	P_b
Voltage	U_b
Current	$I_b = \frac{P_b}{U_b}$
Impedance	$Z_b = \frac{U_b}{I_b} = \frac{U_b^2}{P_b}$
Resistance	$R_b = Z_b$
Inductance	$L_b = 2Z_b$
Capacitance	$C_b = 2/Z_b$

[1] T. M. Haileselassie. Control, Dynamics and Operation of Multi-terminal VSC-HVDC Transmission Systems. PhD thesis, Norwegian University of Science and Technology, 2012.

Droop control correction

- In this study only the cable resistance is modified → correction of steady state results
- Droop control implemented in VSC represents:
 - Voltage source, u_0

PEOPLE

– Virtual resistance, *r*_{droop}

$$\dot{u}_{sys} = k_{droop}(u_{sys} - u_0)$$

Droop control correction

• In experimental test rig the virtual resistance compensates the difference with the HVDC test system:

Droop control correction

- Estimation of results from experiments (in per-unit)
 - DC current: $i_{sys} = i_{exp}$
 - DC voltage: $u_{sys} = u_0 i_{exp}r_{droop}$
 - DC power: $p_{sys} = u_{sys}i_{exp}$
- Scale-up the results from base values of the HVDC system:

$$I_{sys} = I_{b,sys} i_{sys}$$
$$U_{sys} = U_{b,sys} u_{sys}$$
$$P_{sys} = P_{b,sys} p_{sys}$$

- 1. Motivation
- 2. Scale-down procedure
- 3. Example
- 4. Conclusions

• <u>Test system</u>: 3-terminal VSC-HVDC scheme

• Experimental set-up

Specifications of VSCs	Operation rating		
Rated power	2 kW		
DC voltage	250 V		
AC voltage	140 V		

• Virtual circuits in the 3-terminal system

• Droop correction in the experimental set-up

• 3 case studies are considered to validate the method

Parameter	Case 1	Case 2	Case 3
Rated power of VSCs	800	MW	400 MW
MTDC rated voltage			
Cable length 1-3	200 km	100 km	200 km
Cable length 2-3	400 km	500 km	400 km

 Base values and DC cable resistances in per-unit for each case study and the experimental test rig

Quantity	Case 1	Case 2	Case 3	Test rig
Base power, P _b	800 N	VVA	400 MVA	700 VA
Base voltage, V_b		250 V		
Resistance 1-3, r_{13}	0,0096	0,0048	0,0048	0,0005
Resistance 2-3, r_{23}	0,0192	0,0240	0,0096	0,0026

Results

- Comparison simulation in PSCAD with experimental results with and without the droop correction
- Initial injection of 0,3 pu from OWF.
- Increase of power to 0,6 pu.
- Droop control in GSC1 and GSC2 designed to share the same power
- DC current and voltage results

PEOPLE

Results

• Case 1: 800 MW, 113=200 km, 123=400 km

DC currents

DC voltages

Cable 2-3

20

Results

Case 2: 800 MW, *l13=100 km, l23=500 km*

DC currents

DC voltages

Results

• Case 3: 400 MW, 113=200 km, 123=400 km

DC currents

DC voltages

Cable 2-3

- 1. Motivation
- 2. Scale-down procedure
- 3. Example
- 4. Conclusions

Conclusions

- A scaling method was demonstrated to obtain uniform steady state responses between an MTDC experimental rig and three different HVDC systems
- The droop control correction allows representing many equivalent DC cables without using different physical elements→ Increase flexibility of experimental set-up.

Any question?

