

VSC-HVDC Protection Requirements

6th HVDC Colloquium – DTU, Roskilde - Denmark

Ataollah Mokhberdoran PhD Candidate at University of Porto Researcher at Automation & Switchgear Unit of EFACEC Company, Portugal

Offshore Wind Industry

Installed Capacity and Average Wind Farm Size

A 418 new offshore wind turbines in 12 wind farms 34% MORE than in 2012 2,080 turbines are installed and grid connected

4 WW average size offshore wind turbines

work 21 w carried out in: 21

wind farms

new projects: 22 ^{GW} of consented wind farms

Source:EWEA

Offshore Wind Industry

Onshore wind sites are almost rare Onshore wind sites are in northern parts Solar sites are in the southern parts

Generation moves to borders

Population is far from generation

Demand for transmitting bulk amount of the energy over long distances

Point to point transmission lines Multi-terminal and meshed grid EWEA Target 2030 Offshore: 150GW Onshore: 250GW

Multi-Terminal HVDC Grid

Source: European Wind Energy Association (EWEA) 2009/2010, Siemens

Multi-Terminal HVDC Grid

Multi-Terminal HVDC Grid

AC Side Faults Can be Handled because of full control on VSC at AC side fault.

Handling DC side faults is challenging!

Converter Main Circuit Topology

DC Line Parameters

Diodes Overload Capability

IGBTs Surge Capability

DC Link Capacitors Voltage Limitation

DC Grid Stability Issues

Bypass Circuit Capability

Fault Current Contribution

What do we want to save!?

Power IGBTs

HiPak IGBT

3 Standard Isolation Voltages (4, 6 and 10.2kVRMS)

AlSiC Base-plate (Good thermal cycling capability)

AIN isolation (Low thermal resistance)

Realized by Soft Punch Through Chip Technology

Low Forward Voltage Drop Then Low Losses

Soft Switching behavior, Large Safe Operation Area

StakPak IGBT

Optimized for Series Connections: Mechanically & Electrically

Stable Short-circuit Failure Mode (SCFM)

Reduced Flatness of Heat Sink Tolerance

Reduced Pressure Uniformity Requirement

Multi-level Converters with 6 or More Devices Mechanically in series

Chips contacted by common pole-piece

Chips contacted by individual springs

Power IGBTs

Power IGBTs

Power Diodes

 L_{choke}

Topologies

 $= C_{dc}$

Capacitor Contribution

efacec

Universidade do Porto

AC Grid Contribution

Anti-parallel Diodes Stressed

H-Bridge MMC

F-Bridge MMC

ABB

Jacobsson, B., Karlsson, P., Asplund, G., Harnefors, L., Jonsson, T., VSC - HVDC transmission with cascaded two-level converters, <u>CIGRÉ</u> session, Paris, 2010, <u>paper reference B4-110</u>.

HB-MMC, FB-MMC, ACC Comparison at 600 MW at ±300 kV

Using 1.5 kV Cells and a 50 Hz AC system

Quantity	HB-MMC	FB-MMC	AAC
DC current	1 kA		
AC voltage (line)	330 kV		450 kV
Cell voltage variation	±20%		
Cells per arm	400		255
Director Switch per arm			200
Total number IGBTs	4,800	9,600	6,120 + 1,200
DC Fault	Uncontrolled	Controlled	Controlled
Number of IGBTs conducting	2,400	4,800	3,060 + 600
Arm Current	½ l_phase + ⅓ l_dc		I_phase for ½ cycle
Losses	~ 0.5%	~ 1.0%	~ 0.65%
Total number Capacitors	2,400		1,530
Cell capacitor	7 mF		3.6 mF
Total stored energy	19 MJ		6 MJ (+ 2MJ DC filter)
Relative stored energy	32 kJ/MVA		14 kJ/MVA

Source: Tim Green's Presentation at University of Strathclyde, Dec 2014

Diode, Wechselrichter / Diode, Inverter Höchstzulässige Werte / Maximum Rated Values

Periodische Spitzensperrspannung Repetitive peak reverse voltage		V _{RRM}	3300 3300	v			
Dauergleichstrom Continuous DC forward current		l _F	1200	А			
Periodischer Spitzenstrom Repetitive peak forward current	t _P = 1 ms	I _{FRM}	2400	А			
Grenzlastintegral I²t - value	V_R = 0 V, t_P = 10 ms, T_{vj} = 125°C	l²t	440	kA²s			
Spitzenverlustleistung Maximum power dissipation	T _{vj} = 125°C	PRQM	1800	kW			
Mindesteinschaltdauer Minimum turn-on time		t _{on min}	10,0	μs			

Source of Figures: Stephen Finney's Presentation at University of Strathclyde, Dec 2014

Which Topology?

Each One Has Its Pros and Cons

Fault Tolerant Topologies:

- Can Reduce the Need for DC Circuit Breaker
 - Have Higher Power Losses
 - What about the <u>Selectivity</u>?

Half- Bridge based Topologies:

- Good Efficiency
- Defenceless Against the DC side Faults
- Requires Fast DC Fault Current Breaking

Remarks on DC Grid Protections

Fault causes rapidly changing currents in all lines Selectivity: Only the affected element must be switched IGBTs cannot withstand high overloads Diodes are More Vulnerable Fast enough (DC: no inductance XL to limit the current) Only in case of DC fault and not during load change or AC fault

Fault location (branch) detection within a few milliseconds Too fast for communication between measurement devices Independent detection systems Opening at both sides of the faulted line No opening of other branches? Backup in case this fails New superfast DC breakers are needed (≈ 5 ms)

Source: Dirk Van Hertem, Lecture at Strathclyd University, Glasgow, Scotland, Dec 2014

HVDC Circuit Breaker

Fast DC Circuit Breakers

Fast DC Circuit Breakers

Fast DC Circuit Breakers

General Requirements

Quick Interruption Action

- High rate of rise of fault current
- Save converters
- Protec. algorithms
- Footprint

Stored Energy Dissipation

- Surge arrestor
- Limitations as energy absorbers
- Reducing the Reliability of the Device

Surge Voltage Issue

- Surge arrestor
- High overvoltage
- Insulation problem
- Increase the cost of devices

Proposed Method

Pending Patent, No. 108775, 2015, Ataollah Mokhberdoran, Adriano Carvalho, Nuno Silva, Hélder Leite, António Carrapatoso

Proposed Method

Employs a pre-charged capacitor

To feed the fault current during and after main breaker unit interruption

Prevent the sudden reduction of voltage of beginning of the line

Change the final equivalent circuit to a RLC circuit

No surge Voltage

Natural response of the RLC circuit

Ultra-fast action

The converter current is interrupted very quickly (in the range of few hundred micro seconds)

Pending Patent, No. 108775, 2015, Ataollah Mokhberdoran, Adriano Carvalho, Nuno Silva, Hélder Leite, António Carrapatoso

efacec

Universidade do Porto

Pending Patent, No. 108775, 2015, Ataollah Mokhberdoran, Adriano Carvalho, Nuno Silva, Hélder Leite, António Carrapatoso

Aggregated Model

Aggregated Model

Aggregated Model

0.5

Resistor(Ohm)

Overvoltage(%) 1))

60 66

SSCB in A System

Table I: Assumed system parameters						
MMC Power	1000MVA	Cable Length	90km	Transformer	Y/D	
Nominal Voltage	±320kV	Smoothing Reactor	15mH	AC source	230kV	
Configuration	Sym. monopole	Fault Impedance	0.1Ω	MMC Type	Half-bridge	

Table II: Designed SSCB parameters					
I _{th}	3kA	R_1	3kΩ	L	50µH
C ₁	350µF	R_2	30Ω	L_2	10mH

	TABLE III DC CABLE DATA						
La	Layer	Radius	Resistivity	Rel.	Rel.		
ter La		(mm)	(Ωm)	permeability	permittivity		
r (1)	Core	25.2	1.72*10 ⁻⁸	1	1		
tor (2)	Insulator	40.2	-	1	2.3		
(3)	Sheath	43.0	2.20*10 ⁻⁷	1	1		
(4)	Insulator	48.0	-	1	2.3		
(5)	Armor	53.0	1.80*10 ⁻⁷	10	1		
(6)	Insulator	57.0	-	1	2.1		

Point to Point MMC-HVDC

Point to Point MMC-HVDC

efacec

Point to point MMC-HVDC

efacec

Multi-Terminal Model

Multi-Terminal Model

Developed Topology of SSCB

Developed Topology of SSCB

Fault Tolerant Converters can Reduce the Need for DCCB but not Eliminate

Pre-Block Current Stress Must be Considered in Sizing of IGBTs

Pre-Bypass Stress on Anti-Parallel Diodes, Specially Surge Current

Impact of VSC Control during the DC Fault should be Studied

New DC Fault Current Breaking Concept Proposed

Employs Common Components

Shows Improved Characteristics

Thank you for your attention

Questions?